Common Red Flags In Your Analytics
Navigating the pitfalls of digital marketing analytics can be challenging. This article highlights some of the common red flags in your analytics, such as tracking errors, data corruption and misinterpretation of analytics. We’ll provide insights into identifying and addressing these problems effectively, ensuring more accurate and reliable data analysis for better marketing decisions.
The Importance of Proper Data Migration Services
For most marketers, their biggest fear with analytics is that they’ll lose their tracking, turning sales into a black box that they can’t interpret. Corrupted or invisible data can ruin your marketing efforts, but it’s typically noticeable. If analytics stops reporting sessions but you keep making sales, you know something went wrong and can start working on a fix.
This is why proper data migration services are so important. Incorrect data is, in some ways, more insidious than your sales going dark because it’s harder to identify. An error can continue for weeks or months, causing you to develop a marketing strategy around flawed data, which can lead to spending resources where you shouldn’t, and ignoring places where you should.
Even after you fix the error, you’re left comparing the new data to statistics you know are inaccurate. Depending on how widespread the errors are, it can be difficult to know if you fixed the issue entirely. This is why it’s essential to monitor your Google Analytics account closely and investigate anything unusual as soon as you notice it.
The key to maintaining correct analytics is to test data integrity regularly. The earlier you spot and fix the issue, the sooner you can confidently measure your results. One of the problematic things about data errors is that they can appear differently depending on how you have your tracking configured. However, some types of errors tend to occur more often than others.
Let’s take a closer look at common red flags to watch for.
Your Campaigns Have Mirrored Traffic
Larger eCommerce companies run multiple campaigns across platforms to capture revenue. This includes paid ads, SEO, social and email. On top of this, a company might perform A/B tests to find a better layout for landing and conversion pages. UTM codes and other tracking parameters help track users in each campaign, but sometimes this data can get mixed.
If this is the case, AdWords traffic might appear organic, or a successful social media campaign might mistakenly label all traffic as “direct” instead of coming from Facebook, Twitter or Instagram. If this occurs, traffic will appear to drop from one source while increasing in another. For large organizations with different specialists working on their campaigns, this change might not get noticed at first.
Test Case: Let’s say you’re monitoring organic and see a significant drop in traffic over several days. Your first thought might be that Google updated its algorithm. However, there was an increase in direct traffic during the month that mirrored the dip seen in organic. After further investigation, it was discovered that an error in an A/B test caused all organic visitors who saw a test page to appear as direct traffic. Once found, the error was quickly corrected, but unless you monitor all traffic sources – or the error only causes a handful of visits to shift every day – you might not notice anything is wrong until your traffic statistics are off by thousands of sessions.
Referral Spam Inflating Your Numbers
In a past article, we discussed the rise of traffic brokers. Websites that struggle to find advertisers (like porn and weapons dealers) sell their traffic to brokers who create redirects to safer sites. These blogs will redirect to retailers and brands that need traffic from display ads and referrals. The adult website can monetize while the advertiser gets referral traffic; however, to get the highest ad revenue, these brokers often send traffic to legitimate sites before redirecting them to their final destination.
If your website is one of those used by an ad broker, you might see a large spike in referral traffic from websites you have never heard of, often to pages of little value. If you have an affiliate network, some of these secondary sites may be the ones that purchased traffic from the broker, causing these short sessions to appear under that channel instead.
Use the 80/20 rule when checking for fraud on your website and in your analytics. If you know your top 20% of traffic sources, you should be able to easily spot any suspicious newcomers that quickly rise to the top. By keeping an eye on this 20%, you should keep 80% of your data clean.
Fraud can be found in various metrics depending on your website. For eCommerce sites, you might see a jump in sales from your affiliate provider that doesn’t translate into sales on your website. For blogs and lead generation brands, you may see fraud in traffic spikes with minimal time on site and a small number of pages visited. A referral blog that drives 10,000 visitors in one day isn’t helpful if no one spends more than 30 seconds on your website before leaving.
This is another case where the corrupt data could be a blip on your radar for a few days or weeks. Google attempts to filter this data out automatically, but scammers will create additional pages as quickly as their old ones get shut down. The only way to keep your data as clean as possible is to closely monitor your own traffic sources. Once you weed out the fraudulent website, you can make a note in your analytics or adjust the numbers in your reporting to what they should have been.
You Suddenly See an Unexpected Sales Increase
What data is susceptible to corruption depends on what you’re tracking. The publishing and lead generation worlds are different from eCommerce and the data they collect. are different from eCommerce and the data they collect. The more detailed tracking you require of a particular data point, the more susceptible it is to corruption.
Advanced eCommerce sites will filter and tabulate this data to remove things their marketers don’t wish to track, such as sales tax, so that they can get a more accurate picture of revenue. However, if that filtering misfires, it can cause unusual changes in the data that might be difficult to pick up on unless you’re looking for them.
In many cases, the data is corrupted after website maintenance or updates to the site’s tags. A tag might be misplaced or set twice, and the parameters could cause brands to capture double the information – or none at all.
If you see an unexpected jump or dip in your sales, be sure to double-check the data. One of the first places you should look is the Average Order Value. If the AOV is significantly higher – by whatever you charge for shipping or your local tax rate – you could be in trouble. The same applies if your AOV is suspiciously lower. If this is the case, look at the top products you sold and see if they’re any different than when your AOV was at a normal level.
Run Regular Audits for Hidden Problems
These are just a few of the major issues that can cause inaccurate data, but there are dozens of smaller errors that could cause your tags to misfire. The best way to stop mistakes from corrupting your site is by running regular audits since this will make it easier to locate problems faster.
Consult KodingWeb for Optimal eCommerce Solutions
When we start working with clients at KodingWeb, one of our first steps is recommending a visibility audit. Our data specialists will review your tags and analytics to isolate any existing errors and then provide fixes to the code to ensure you have the correct data moving forward. To make informed decisions, you need to have clean data. If you don’t know where to start, our comprehensive web analytics services can get you back in control of your data. Contact KodingWeb today for a free consultation and learn more about our agency and consulting services!